
































Prescriptive Analytics on Firm Response Strategies

Abstract

We study the problem of devising an appropriate opinion management strategy for a �rm to respond
to online customer reviews using a stochastic differential equation model. The model describes the
evolution of review ratings over time for a given response strategy employed by the �rm. This model
is validated using data on online customer reviews and �rm responses from one of the world’s largest
online travel agents. Compared with popular benchmark models such as ARMA and GARCH, our
model achieves better predictive performance in general, but moreover is able to fuse the response
strategy into the underlying data generation process of review ratings. Our approach therefore, is not
just predictive, but more importantly one that can be used in a prescriptive sense, namely, to prescribe
a response strategy that controls review ratings in a desired manner.
Keywords: Stochastic Differential Equation Model, Customer Opinion Management, Response Strat-
egy

1 Introduction
In today’s online economy, customers are increasingly relying on online reviews, social media and
other forms of word of mouth to form opinions on a product or service they intend to purchase. Of
these sources, online reviews have been found to have a big impact on a �rm’s reputation and revenue
(Jabr and Zheng 2014). Negative reviews in particular, play a more prominent role (Chevalier and
Mayzlin 2006). Firms, however, continue to struggle with how to mitigate or counter the in�uence of
negative reviews.

Many savvy �rms have found that user opinions can be managed effectively by directly responding
to reviews. Evidence suggests that a calibrated �rm response is often an effective way to tackle with
negative reviews. It is reported that after seeing a carefully crafted response to a negative review, 71%
of customers change their perception of the brand (Meyer 2013). Proserpio and Zervas (2016) �nd that
hotels that actively respond to reviews receive an average increase of 0.12 star rating in TripAdvisor.
Gu and Ye (2014) show that directly responding to negative reviews not only addresses a particular
customer’s concerns, but also helps limit the spillover of negative opinions to other customers towards
building up the �rm’s online reputation.

Our focus in this study is on the design of a response strategy to manage user opinions. A full
response strategy � one that responds to every review � will likely be either too costly or ineffective,
if the responses are not adequate. To unravel the mechanics of how review ratings evolve over time,
we develop a Stochastic Differential Equation (SDE) method to model the underlying review rating
generation process. This model captures how average ratings react to the arrival of new reviews as
well as the �rm’s response strategy.

In the SDE model, the stochastic variable of interest (or thestate), is a measure of customer value
proposition, i.e., a customer’s perception of quality of a product or service at any given point in time.
The state is operationalized as the average of a certain number of recent ratings provided in customer
reviews. The change in the state during a small time interval is decomposed into a deterministic
component and a stochastic component. The deterministic component combines the �rm’s response
strategy and the in�uence of newly arrived reviews. The stochastic component consists of a random
noise term that cannot be explicitly observed or explained. With some modi�cations, our proposed
SDE model can be transformed into a form similar to the Cox-Ingersoll-Ross (CIR) model (Cox et al.
1985).

We solve our proposed SDE model to estimate the stochastic process of the state as a function of
time and other primitives, including the �rm’s response strategy. This stochastic process is validated
empirically using data on online customer reviews and �rm responses from one of the world largest
travel agents. Compared with traditional time series forecasting methods such as Autoregressive
Moving Average (ARMA), Generalized Autoregressive Conditional Heteroscedasticity (GARCH),
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Moving Average (MA), and Exponential Smoothing (ES), our model generally achieves superior
predictive performance.

However, the key strength of our approach is that it is able to recover the distribution of future
review ratings as a function of the response strategy used by the �rm. Our approach therefore, is not
just predictive, but also one that can be used in a prescriptive sense, namely, to prescribe a response
strategy that controls the rating generation process in a desired manner.

2 Literature Review
In our paper, we develop a Stochastic Differential Equation (SDE) model of the dynamics of review
ratings in the presence of a response strategy used by the �rm. A stochastic process,Xt ; t � 0, models
a random variable of interest, that varies continuously and stochastically through time. We model the
stochastic rating process as a Markov process, where the probability distribution of the future value
depends only on its current value, that subsumes the effect of past values of the process. Random-
ness is captured by a Wiener process (Ross 2014), a fundamental building block for randomness in
stochastic processes. Often there are special characteristics of interest in time series data such as the
mean reversion property, which allows the state variable to �uctuate around one speci�c level (Dixit
et al. 1994). One of the simplest mean-reverting processes, called the Ornstein-Uhlenbeck process,
follows dXt = a (m� Xt)dt + s dWt , wherea is the speed of reversion, andm represents the mean
level of Xt . If Xt is greater (less) thanm, it is more likely to fall (rise) over the next short interval of
time.

Our study differs from the past research both in terms of the problem being solved, and the re-
search methodology being used. To our knowledge, this study represents one of the �rst attempts to
prescribe an appropriate response strategy to manage user opinions. We also model the dynamics of
online reviews, namely, how review ratings evolve over time after accounting for the response strategy
used by the �rm. From a methodological perspective, we develop a stochastic differential equation
model to prescribe the review data generation process. A key distinction of our stochastic differential
equation model is that we model the stochastic nature of the review data generating process. We next
develop and operationalize the proposed SDE model of how review ratings evolve over time.

3 Stochastic Model of Review Ratings
We consider a typical online review setting, where reviews and ratings arrive in a chronological se-
quence forming time series data. Majority of customers read reviews sequentially from the default
review page (Wu et al. 2015). At any point of time, we capture the notion of thestate(consumers’
perception of product quality) as the moving average of the lastn most recent ratings. To model
the stochastic nature of the ratings process, we use the moving average of recent ratings as the state
variable of interest.

In a time series data, a moving average is commonly used as a measure of the state (De Gooijer
and Hyndman 2006). In our setting, the state of the system is affected by the arrival of new reviews
as well as any responses the �rm may provide to improve customer value proposition. The goal of
our model is to devise a model that captures the evolution, over time, of the state of the system (xt).
To model the data generating process, we start with a simpli�ed micro-structure: the change of the
state (dxt) in a small time interval fromt to t + dt. The change in the state consists of a deterministic
component and a random component.

The deterministic component models the expected change (drift) in the state,E(dxt), as a function
of the arrival of reviews and �rm responses, if any. We assume that the arrival of reviews follow a
Poisson process with ratel . During a small time interval, the probability of arrival of one review is
l dt. A review can be either negative or positive.

Let p (or 1� p) be the probability that a review is negative (positive). The impact of a negative
review on the state depends on a damage parameterb and the current state of the systemxt . The
negative impact is larger for higher values ofxt ; or conversely, when customers already had a low
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opinion, a negative review causes less damage. In the extreme case whenxt = 0, there is no further
damage. On the other hand, the impact of a positive review depends on a boost parameterr and
(b � xt), the difference between the highest possible quality perceptionb and the current statext .
When the perception of quality is already high, a positive review does not boost it as much. In the
extreme case whenxt = b, there is no further gain possible of a positive review.

Finally, let the �rm use a damage control effort ofa , associated with responding to reviews. The
impact of this effort on the state isa (b � xt). When the perception of quality is high, the impact
of damage control diminishes. Taking together the impact of all the three driving forces (the impact
of positive review, the impact of negative review, and the impact of damage control in the form of
management responses) onxt , we can write

E(dxt) = ( l (1 � p)r (b � xt) � l pbxt + a (b � xt))dt

Collecting the terms and rewriting we get the form,

E(dxt) = k1(k2 � xt)dt

wherek1k2 = rl (1 � p)b+ a b andk1 = a + b l p+ rl (1 � p).
The stochastic component (diffusion) of the change in perception of quality (dxt) is modeled as

s
p

b � xtdWt , wheredWt is the Wiener process used to capture white noise or randomness;dWt �
N(0;dt). The parameters in�uences the magnitude of the random component, and the term

p
b � xt

ensures the state variable not to exceed the upper bound,b. When the state variable touchesb, the
diffusion term dissolves. Square root processes are commonly used to model stochastic movements
(Brown 2004). As(b � xt) becomes very small, the square root term diminishes slower than a linear
structure, implying that the stochastic component continues to have a material impact even asxt
approachesb. Also, the square root structure is one among the few SDE structures that lends itself to
closed form solutions. To summarize, we model the change in state using the following SDE:

dxt = k1(k2 � xt)dt + s
p

b � xtdWt (1)

Regarding equation (1), in the long run (ast ! ¥ ), the steady state mean is obtained by setting
and solvingE(dxt) = 0. Thus, the steady state (long run) mean of perception of quality (k2) is given
by E(xt) = k2 = b

1+ b l p
a + rl (1� p)

.

It is clear from the above that the steady state mean increases with the damage control efforta .
Also, if no damage control effort is exerted by the �rm to counter negative reviews (a = 0), the steady
state mean is likely to go to zero when reviews are predominantly negative. That is, the steady state
mean will tend to zero if there is no damage control effort (a = 0) and the impact of negative reviews
is much larger than that of positive ones (b p � r (1 � p)). This negative trend in posted ratings over
time is consistent with observations in the literature (Li and Hitt 2008, Moe and Schweidel 2012).
Generally speaking, �rms would like to keep the perception of quality at a high level, and perhaps
would also like its �uctuations to remain within a relatively small interval.

The SDE model in equation (1) can be transformed into a standard form using the linear trans-
formationyt = b � xt . Then using Ito’s Lemma and after some algebra, the transformed SDE model
becomes:

dyt = k1(k3 � yt)dt + s
p

ytdWt (2)

wherek3 = b � k2. We can see that the structure of the SDE model in equation (2) is in the form of
the CIR model. Cox et al. (1985) noted that the distribution ofyt given yu for someu < t is, up to
a scale factor, a non-central chi-square distribution. The expectation and variance foryt , given the
initial valuey0 are

E(yt jy0) = y0e� k1t + k3(1 � e� k1t) (3)
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V(yt jy0) = y0
s 2

k1
(e� k1t � e� 2k1t) +

k3s 2

2k1
(1 � e� k1t)2 (4)

4 Data
Our main data source comes from Ctrip.com, the leading online travel agent aggregator in China.
Ctrip offers a variety of tours (products), in which the travel agent provides tourism services including
itinerary planning, hotel accommodation, transportation, guided tour service, etc. Customers book
these tours and then post reviews at Ctrip.com. These tours are offered by different travel agents
where Ctrip itself is the largest travel agent on Ctrip.com. A �rm (travel agent) can only respond to
customer reviews of its own tours.

We obtained the data for 20 random tours from April 2012 to June 2014. The average number
of reviews per tour is 1,510 with the minimum value 380 and the maximum value 7,035. For each
tour, we collected customer review information for each posting, including a unique identi�er for
the reviewer, review date, review ratings (from 1 to 5), and review texts. If the review received a
response from the �rm, we record the date of response and the text of the response. Table 1 presents
the frequency distribution of review ratings. The last column in Table 1 presents the fraction of

Table 1: Distribution of Customer Review Ratings and the Fraction of Reviews with Responses

Review Rating No. of
Reviews Percentage No. of

Responses
Fraction
with Response

1 201 0.67% 175 87.06%
2 115 0.38% 98 85.22%
3 852 2.82% 308 36.15%
4 5,895 19.52% 775 13.15%
5 23,137 76.61% 364 1.57%
Total 30,200 100.00% 1,720 5.70%

customer reviews which received responses by the star-rating of the tours. As can be clearly seen,
there is more response activity when the rating is low, indicating that �rms are selective with their use
of a response.

Next, we label a review as negative or positive in a manner described below. If the rating associ-
ated with a newly arrived review is above a certain threshold, the review is considered positive, and
otherwise negative. Since the review ratings in this industry are generally high (above 4), we choose a
relatively high threshold: if the rating is less than or equal to 4, we consider it as negative and positive
otherwise.

5 Model Estimation
We apply the Maximum Likelihood Estimation (MLE) procedure to recover the parameters in our
SDE model. The parameters need to be estimated are the response effort (a ), damage (b ), boost
(r ), arrival rate (l ), negative review probability (p) and magnitude of the stochastic component (s ).
The value of the upper bound for the rating (b) is �xed to be 5 since this is the value of the highest
rating allowed by the review system. The unit of analysis is a speci�c tour, i.e., we estimate the above
parameters for each tour. To apply MLE, we �rst need to specify the probability density function of
yt , which has been originally derived in Feller (1951). For a given value ofyt at timet, the density of
yt+ s at timet + s is

p(yt+ sjyt ;a ; r ;b ;s ; l ; p;s) = ce� u� v(
v
u

)
q
2 Iq(2

p
uv) (5)

wherec = 2k1
s 2(1� e� k1s)

; u = cyte� k1s; v = cyt+ s; q = 2k1k3
s 2 � 1; k1 = a + r (1 � p)l + b pl ; k3 =

5b pl
a + r (1� p)l + b pl ; and Iq(2

p
uv) is the modi�ed Bessel function of orderq. k1 measures the speed
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of reversion, andk3 is the steady state mean ofyt . For simplicity, we de�neq � (a ; r ;b ; p; l ;s ).
The log-likelihood function foryt with N observations is

lnL(q) =
N� 1

å
i= 1

ln p(yti+ 1jyti ;q;Dt) (6)

Plugging equation (5) into equation (6) yields

lnL(q) = ( N � 1) lnc+
N� 1

å
i= 1

[� uti � vti+ 1 + 0:5qln
vti+ 1

uti
+ ln Iq(2p uti vti+ 1)] (7)

whereuti = cyti e� k1Dt andvti+ 1 = cyti+ 1. The Maximum Likelihood estimate�q is solved by maximizing
the log-likelihood function described in equation (7) over its parameter space:

�q = ( �a ; �r ; �b ; �p; �l ; �s ) = argmax
q

lnL(q):

We then describe how the values of the review arrival ratel and the negative review probability
p are estimated from the data. For each tour, we observe the timestamp of every review. Taking the
�rst difference along two consecutive reviews yields the inter-arrival time of reviews. The reciprocal
of its average is the expected review arrival ratel . We empirically verify with our data that the inter-
arrival time of reviews approaches an exponential distribution, indicating reviews arrive according to
a Poisson Process with ratel . The expected probability of negative reviewp is inferred by counting
the number of negative reviews over the total number of reviews for each tour. We also empirically
verify that negative reviews arrive according to a Poisson Process with ratepl , consistent with the
theory that the split of a Poisson Process is also a Poisson Process.

Table 2: The Parameter Estimation Results
Tour ID �l �p �a �r �b �s g1 g2
5106 1:595��� (0:259) 0:298��� (0:031) 0:032��� (0:007) 0:019��� (0:007) 0:009��� (0:001) 0:092��� (0:002) 1.55 0.17
72528 1:533��� (0:333) 0:42��� (0:052) 0:031��� (0:008) 0:019�� (0.009) 0:008��� (0:001) 0:084��� (0:003) 1.83 0.26
73154 2:22��� (0:281) 0:358��� (0:029) 0:059��� (0:009) 0:020��� (0:006) 0:011��� (0:001) 0:115��� (0:003) 2.06 0.18
80961 6:377��� (0:817) 0:193��� (0:024) 0.031 (0.027) 0:019��� (0:005) 0:005��� (0:000) 0:232��� (0:003) 0.32 0.19
29336 1:941��� (0:644) 0:266��� (0:063) 0:013� (0.010) 0:010� (0.007) 0:003��� (0:001) 0:112��� (0:003) 0.92 0.19
23222 1:633��� (0:269) 0:248��� (0:029) 0:052��� (0:011) 0:019�� (0.009) 0:011��� (0:001) 0:098��� (0:003) 2.23 0.10
30938 1:54��� (0:489) 0:279��� (0:053) 0:014� (0.010) 0:020�� (0.009) 0:006��� (0:001) 0:091��� (0:003) 0.63 0.24
71480 3:428��� (0:471) 0:261��� (0:026) 0:030�� (0.013) 0:020��� (0:005) 0:006��� (0:001) 0:156��� (0:003) 0.59 0.22
88292 3:711��� (0:539) 0:216��� (0:027) 0:030� (0.023) 0:017�� (0.008) 0:006��� (0:001) 0:198��� (0:004) 0.60 0.17
693 19:72��� (1:547) 0:163��� (0:013) 0:248��� (0:063) 0:187��� (0:004) 0:045��� (0:001) 0:410��� (0:002) 0.08 0.18
56737 7:437��� (0:804) 0:199��� (0:020) 0:053� (0.033) 0:011�� (0.006) 0:005��� (0:000) 0:261��� (0:004) 0.78 0.14
71478 0:624��� (0:093) 0:365��� (0:030) 0:035��� (0:005) 0:051��� (0:014) 0:022��� (0:002) 0:056��� (0:003) 1.72 0.21
49049 1:565��� (0:227) 0:333��� (0:030) 0:035��� (0:007) 0:023��� (0:007) 0:010��� (0:001) 0:097��� (0:003) 1.49 0.20
72526 0:932��� (0:214) 0:258��� (0:028) 0:030��� (0:010) 0:062��� (0:015) 0:024��� (0:003) 0:071��� (0:004) 0.71 0.20
32391 1:735��� (0:372) 0:309��� (0:026) 0:012� (0.009) 0:046��� (0:007) 0:011��� (0:001) 0:107��� (0:003) 0.21 0.37
72527 0:819��� (0:187) 0:302��� (0:051) 0:031��� (0:008) 0.016 (0.013) 0:010��� (0:002) 0:060��� (0:003) 3.50 0.10
69278 1:199��� (0:273) 0:278��� (0:036) 0:025��� (0:009) 0:032��� (0:010) 0:011��� (0:002) 0:087��� (0:003) 0.93 0.20
28245 1:052��� (0:351) 0:357��� (0:077) 0:011�� (0.006) 0:012� (0.009) 0:005��� (0:001) 0:075��� (0:003) 1.39 0.23
30814 0:802��� (0:398) 0:288��� (0:113) 0:022�� (0.013) 0.010 (0.022) 0:008��� (0:003) 0:090��� (0:004) 3.83 0.08
16311 2:268��� (0:293) 0:372��� (0:020) 0:049��� (0:009) 0:047��� (0:006) 0:014��� (0:001) 0:114��� (0:003) 0.74 0.34
Notes. The estimation is based on the in-sample data for each tour.
*** p � 0:01; ** p � 0:05; * p � 0:10.

We use the Nelder-Mead simplex algorithm to numerically obtain the MLE estimates. We imple-
mented the SDE estimation procedure in MATLAB. Table 2 presents estimation results for all the 20
tours with the standard error in parenthesis. In Table 2, for each tour, we estimate the corresponding
review arrival rate, the probability of negative review, the control effort parameter, the boost parame-
ter, the damage parameter, and the magnitude of the stochastic component. Table 2 shows that there

521



is considerable variation across all 20 tours with respect to all these parameters, and most estimates
are signi�cant.

In understanding the estimation results across tours, comparing the estimated values of the pa-
rametera andr provides us less insights, since the impacts of the control part and positive arriving
reviews todxt depend ona (b � xt) and rl (1 � r )(b � xt) respectively. In order to compare the
impacts from the two forces more intuitively, we introduceg1 = a

l (1� p)r , which measures the normal-
ized boosting impact of the �rm’s control relative to the boosting impact of a positive review. In this
sense,g1 is similar to the notion of odds ratio, where the marginal impact of �rm response is measured
against that of a positive review.g1 > 1 represents �rms’ control exerts more in�uence in boosting
the state than a positive review does on average. The eighth column in Table 2 presents the value of
g1 for each tour. We �nd there is a large variance ing1 across different tours (the average value of
g1 is 1.305 with a high variance 1.028), indicating that the response strategies across tours are quite
different. In Section 7, we will provide an operational interpretation of these response strategies and
develop procedures to optimize them under different business objectives.

In a similar manner, we de�neg2 = r (5� E(xt ))
bE(xt )

, to measure the relative impact of a positive review
against the impact of a negative review. The last column in Table 2 shows that the relative impact of
positive reviews with respect to negative ones is about the same across different tours (the average
value ofg2 is 0.198 with a small variance 0.005). Giveng2 < 1 from our results, the negative review
has bigger in�uence (on the state) than positive review, which is consistent with prior study (Chevalier
and Mayzlin 2006). We next validate our SDE model with extensive model comparisons.

6 Model Validation
The best way to validate a structural model is to predict the outcomes of quasi-experiments that
the world presents to us, in which a policy change occurs and data before and after the change is
available. However, such opportunities are rare. Keane (2010) advocates alternatively validating a
structural model (against a reduced form model) by resting primarily on how well the model performs
in validation exercises, i.e, by examining whether the model does a reasonable job of �tting the
historical data and whether the model does a reasonable job at out-of-sample prediction. In our
setting, since we could not apply falsi�cation tests to validate (or invalidate) our prescriptive model
that requires conducting �eld experiment with the �rm, we rely on comparing different models using
the predictive performance.

Speci�cally, we examine whether our proposed SDE model performs well on the basis of pre-
dictive performance as compared with conventional reduced form time-series models, including the
representative ARMA, GARCH, Moving Average (MA), and Exponential Smoothing (ES).

Autoregressive moving average (ARMA) is a classic method to model time series data. The
model consists of two parts, an autoregressive (AR) part and a moving average (MA) part. The au-
toregressive part is a function of lagged dependent variable while the moving average component is
a function of lagged error terms. The model normally takes the form ofARMA(p;q) wherep is the
order of the autoregressive part andq is the order of the moving average part. After specifyingp and
q, ARMA models can be estimated by least square regressions. The generalized autoregressive con-
ditional heteroscedasticity (GARCH) model is an extension of the Engle’s autoregressive conditional
heteroscedasticity (ARCH) model for variance heteroscedasticity. TheGARCH(p;q) model speci-
�es p GARCH coef�cients associated with lagged variances, andq ARCH coef�cients associated
with lagged squared innovations. A simple Moving Average (MA) uses the un-weighted mean of the
previousm observation to forecast the next data point (Brown 2004); while the simple Exponential
Smoothing (ES) weights the past data in an exponentially decreasing manner. We choosem equal to
5 in our operationalization of MA and ES.

For each tour, we use the �rst 70% portion as in-sample and the remaining as out-of-sample.
We use in-sample to calibrate all the models considered. For both the ARMA and GARCH, the
choices ofp andq are empirically determined from the data on the basis of Bayesian Information
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Criterion (BIC) values for each tour. We then use the trained models to predict the out-of-sample.
For SDE,yt follows the data generating process speci�ed in equation (2). Given an initial point
of y0, the conditional expectation at timet is �yt = E(yt jy0) = ( y0 � k3)e� k1t + k3 and �xt = 5 � �yt .
The out-of-sample predictive performance is measured using Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), and Symmetric Mean Absolute Percentage Error (SMAPE). RMSE is

calculated followingRMSE=
r

n
å

t= 1

( �xt � xt )2

n , MAE is computed asMAE =
n
å

t= 1

j �xt � xt j
n , and SMAPE

takes the form ofSMAPE= 100%
n

n
å

t= 1

j �xt � xt j
j �xt j+ jxt j .

6.1 In-Sample Performance

We �rst validate our proposed data generating process of review ratings by comparing the estimated
steady state mean (ast goes to in�nity) of the state variablext with the observed steady state mean.

The observed meanmis derived from the data directly according tom= 1
N

N
å

i= 1
xi . The estimated steady

state mean ofxt using SDE is calculated as�mSDE = 5 � �k3. The agreement of these two means is a
measure of �tness for a model. The values of�mARMA, �mGARCH, �mMA, and �mES represent the estimated
steady state means of review ratings using ARMA, GARCH, MA, and ES respectively.

Overall, the average of the estimated means of 20 tours from our SDE method is 4.652, very
close to the observed mean of 4.653, lending support to the validity of our proposed data generating
process. The average of the estimated means of 20 tours is 4.651 from ARMA method, and is 4.681
from GARCH method. Formally, we conduct the pairedt test (two-tailed) between SDE and the other
benchmark methods to examine whether the two sets of means are statistically different. These results
are reported in Table 3.

The p-value of the pairedt test between�mSDE andm is 0.676, indicating no signi�cant difference
between the SDE prediction and the observed values; the difference between SDE and ARMA is
also insigni�cant (p = 0:725), whereas the p-values of the pairedt tests between SDE and all other
methods are signi�cant: 0.009, 0.021, and 0.019 for GARCH, MA, and ES respectively. To sum-
marize, regarding the steady state mean, our SDE method performs better than GARCH, MA, and
ES, and achieves comparable performance with ARMA. Besides the steady state mean, we also use

Table 3: Steady State Mean Comparison
Comparison t-statistic (p-value)
Observed versus SDE 0.425 (0.676)
SDE versus ARMA 0.356 (0.725)
SDE versus GARCH 2:934��� (0:009)
SDE versus MA 2:511�� (0:021)
SDE versus ES 2:571�� (0:019)
*** p � 0:01; ** p � 0:05; * p � 0:10.

RMSE, MAE, and SMAPE for all the methods to gauge the in-sample inference performance. Ta-
ble 4 presents the t-statistics and corresponding p-values for the statistical comparisons pertaining to
in-sample metrics. As Table 4 shows, the SDE method outperforms GARCH, MA, and ES, but is
comparable with ARMA.
6.2 Out-of-Sample Performance

We then compare the predictive performance of our SDE model with ARMA and GARCH, MA, and
ES models on out-of-sample data. Here we conduct two types of predictive analyses: long term and
short term. Long-term prediction refers to the ability to predict the value ofxt at the end of the out-
of-sample period, whereas short-term prediction refers to the ability to predict the value ofxt at the
end of the next 20 observations.
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Table 4: Paired T-Test Results: In-Sample and Out-of-Sample

Comparison In-Sample Out-of-Sample
Long Term

Out-of-Sample
Short Term

RMSE

SDE versus ARMA 0.592 (0.561) 0.443 (0.663) 1.112 (0.280)
SDE versus GARCH 2.872***(0.010) 2.707** (0.014) 2.747** (0.013)
SDE versus MA 4.237***(0.000) 2.586** (0.018) 2.327** (0.031)
SDE versus ES 4.147***(0.001) 2.559** (0.019) 2.042* (0.055)

MAE

SDE versus ARMA 0.854 (0.404) 0.651 (0.523) 1.118 (0.277)
SDE versus GARCH 1.571 (0.133) 2.559** (0.019) 2.811** (0.011)
SDE versus MA 3.772***(0.001) 2.545** (0.020) 2.618** (0.017)
SDE versus ES 3.681***(0.002) 2.509** (0.021) 2.339** (0.030)

SMAPE

SDE versus ARMA 0.005 (0.996) 0.070 (0.944) 1.150 (0.264)
SDE versus GARCH 2.575** (0.019) 3.048***(0.007) 3.979***(0.001)
SDE versus MA 2.697** (0.014) 2.841***(0.010) 2.277** (0.035)
SDE versus ES 2.591** (0.018) 2.769** (0.012) 2.317** (0.032)

*** p � 0:01; ** p � 0:05; * p � 0:10.

From a control perspective, knowing the future in the short term is perhaps more important, be-
cause a control is a short-term intervention device, rather than something like a strategic plan that has
medium to long-term implications. Table 4 shows the t-statistics and corresponding p-values pertain-
ing to out-of-sample metrics. Among these methods, GARCH performs the worst. We applied the
Engle test for residual heteroscedasticity and the results indicate that the autoregressive conditional
heteroscedasticity effect is not signi�cant, meaning the GARCH model does not �t our time series
data well. SDE and ARMA achieve comparable predictive performance on the out-of-sample. As
a whole, the SDE method performs better than GARCH, MA, and ES for both long-term and short-
term out-of-sample prediction. To summarize, SDE achieves comparable predictive performance with
ARMA, but outperforms the other benchmark methods such as GARCH, MA, and ES.

It is important to note that though ARMA achieves comparable predictive performance with SDE,
the value of the SDE model extends beyond predictive analytics. The key advantage of the SDE
approach lies in its ability to perform counterfactual analysis and policy simulation, based on which
managers can use the model to prescribe what would happen if some elements of the environment
change, as we will demonstrate next.

7 Probabilistic Response Strategy and Applications
To demonstrate the prescriptive use of our model, this section provides some practical applications of
how the probabilistic response strategy could be implemented to achieve a certain managerial goal.
This is only made possible through our structural SDE model (e.g. as opposed to ARMA, GARCH,
etc.).

A key advantage of our proposed SDE approach lies in its ability to not only predict consumers’
perception of quality, but also in�uence it by responding to customer opinions in a prescriptive sense.
The �rm could have different objectives concerning the manner in which it desires to in�uence the
perception of quality. Our SDE approach enables the �rm to determine how a probabilistic response
strategy (policy) shall be chosen to achieve such a goal. Clearly, a purely predictive approach (es-
pecially, one that does not model the underlying data generating process) will not be of much help
when it comes to intervene the evolution of consumers’ perception of quality over time. We discuss
below how our approach can be applied to three different control objectives with corresponding policy
recommendations.
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Mean Control

A natural goal that �rms might want to achieve is a target value of the average consumers’ perception
of quality,mgoal. We have,

mgoal =
5

1+ b l p
a + rl (1� p)

;

hence,a = b l pmgoal
5� mgoal

� rl (1 � p): This choice ofa can then be mapped to a corresponding proba-
bilistic response strategy.

Mean-Variance Control

A �rm may want to in�uence not only the mean perception of quality but also its variance since large
�uctuations in consumers’ perception of quality would likely be viewed by customers as a sign of an
unreliable product or service. For example, one kind of mean-variance control would be to achieve a
speci�ed value of the coef�cient of variation of the state (cg, say). By solving

p
V(xt)
mx

=

q
k3s 2

2k1

5 � k3
=

q
( 5b l ps 2

2(a + b l p+ rl (1� p))2 )
5(a + rl (1� p))

a + b l p+ rl (1� p)

= cg;

we can determine the value of the control (a ) and then map this value to a corresponding probabilistic
response strategyp(xt).

On similar lines, one may wish to set a lower limit (say,ml ) for the mean-variance expression
m� g

p
V(xt), whereg is a penalty for variation. Note that the mean and variance ofxt are both

functions ofa . Hence, one can determine the smallest value of the control parametera to achieve
ml , and then map this value ofa to a corresponding probabilistic response strategy.

Service-Level Control

Rather than a mean-variance objective, �rms may want to ensure that a certain percentage of the per-
ception of quality is greater than a desired leveld. This is especially important in service management
since a high probability of poor performance (state falling below a certain level), despite a reasonable
mean, indicates poor service level. In the context of control applications, this phenomenon is referred
to as �out of control" (Merchant 1982). Put differently, the objective is to provide a probabilistic guar-
antee that the state will not fall below a speci�ed level over a given planning horizon. We call this
Service-Level Controlbecause it is similar to provide a service-level guarantee if the ratings system
(and the responsibility to respond to negative reviews) was offered as a service by a vendor.

The probability density function of 2cyi is a non-central chi-squared distribution with 2q+ 2 de-
grees of freedom and non-centrality parameter 2u. We have

Pf xi � dg = Pf yi � 5 � dg = Pf 2cyi � 2c(5 � d)g = ps;

and further
Fy(2c(5 � d);2q+ 2;2u) = g(a ) = ps:

Then the corresponding control parametera is calculated througha = g� 1(ps).
The above three examples illustrate how �rms’ potential objectives can be achieved by utilizing

our SDE approach to manage an on-going process proactively, rather than merely predict its behavior
reactively. Of course, �rms could set different objectives and prescribe the optimal response strategy
to achieve their speci�c objective in practice.
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A Numerical Illustration

We illustrate the above policies with tour 5106. The estimated parameters for this tour are�l = 1:595,
�p = 0:298, �r = 0:019, �b = 0:009, �s = 0:092, and�a = 0:032 and the mean of the review ratings is
�m= 4:63. We calculate its coef�cient of variation which is equal to 0.036, and the probability of the
perception of quality greater than 4.7 is equal to 0.05. In Mean-Control, the �rm sets the target mean
review rating to be 4:7, and the corresponding control parameter is�aM = 0:046. In Mean-Variance
control, the target coef�cient of variation of the review ratings is set to be 0.05, the corresponding
control parameter is�aV = 0:017. In Service-Level control, the �rm would like to ensure that the
probability that the perception of quality is greater than 4.7 is 0.8. Here, the corresponding control
parameter is�aS = 0:054. We map these values of the control to the probabilistic response strategy.
When the state variable is greater thank2 (the target mean), the probability of providing a response is
zero.

Table 5 tabulates the recommended probability of providing a response given the statext under
different control objectives discussed above. Also shown (in the second column) is the value of the
control (a ) that achieves the objective (mean, mean-variance, and service-level). As the control (a )
magnitude increases, the probability of providing response becomes higher for the same level of the
state variable.

Table 5: Probabilistic Response Strategy for Different Control Objectives
Objective a xt

4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7
Mean 0.046 0.96 0.82 0.68 0.55 0.41 0.27 0.13 0
Mean-Variance 0.017 0.41 0.33 0.25 0.17 0.08 0 0 0
Service-Level 0.054 1 0.96 0.81 0.65 0.50 0.35 0.20 0.04

8 Conclusions
This paper studies the problem of managing online customer opinions using management response
strategy. Toward this end, we develop a stochastic differential equation model to study the evolu-
tion of user opinions over time. The model incorporates acontrol strategy into �rm response to user
reviews and investigates the impact of the responses on review ratings. The model is empirically es-
timated using data on �rm responses and online customer reviews for two of the world largest travel
agents. The model is validated along different dimensions of its performance. First, the predicted
steady state mean obtained from the model is compared with the observed steady state mean, inferred
directly from the data. We then demonstrate the superiority of our SDE model by examining its pre-
dictive performance compared with benchmark models including ARMA, GARCH, MA, and ES. Our
approach achieves comparable predictive performance with ARMA, but outperforms GARCH, MA,
and ES. We further provide an operational interpretation of the control by mapping it to an equiv-
alent probabilistic response strategy. Finally, we demonstrate the applicability of the probabilistic
response policy under different control objectives, namely, mean control, mean-variance control, and
service-level control.

The main contributions of the paper are two-fold. Recent research shows that directly respond-
ing to user comments can increase online reputation. However, while predictive models of review
ratings exist, there are no prescriptive models that recommend the best response strategy to decision
makers to achieve a speci�c managerial goal. We believe what we offer in this study is a signi�cant
�rst step towards a prescriptive response strategy. From a methodological perspective, the stochas-
tic differential equation approach presented here, opens the black box of the data generating process
underlying review data as opposed to reduced form models that essentially stop at estimation or pre-
diction. Compared with other structural models, a key distinction of our approach is that we model the
stochastic, time-series nature of the review data generating process. Most other structural approaches
have emphasized a utility framework to understand the process of data generation.
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6 Discussions and Conclusion 
With the booming of crowdfunding across the world, promotion of crowdfunding campaigns is 
attracting increasing attention from both fundraisers and crowdfunding platforms. As a new 
promotional strategy, lottery option was expected to boost crowdfunding performance. To evaluate 
the impacts of the lottery option on crowdfunding performance, we propose a framework that 
contains four measures of fundraising performance and one measure of participation performance.  
Our research generates several interesting and counterintuitive findings. The good news is that lottery 
option has a strong positive and significant impact on the popularity measure of participation 
performance. However, the new promotional tool has an untoward negative and significant impact 
on success measure of fundraising performance. Moreover, lottery option has negative and 
significant impacts on effect measures of fundraising performance. Finally, lottery option has a 
negative but not significant impact on efficiency measures of fundraising performance. Our findings 
suggest that use of lottery option in crowdfunding campaigns can help fundraisers to significantly 
increase the number of backers. Unfortunately, inclusion of lottery option in crowdfunding 
campaigns is detrimental to the amount of funds raised and the fundraising percentage. Our results 
pose an interesting dilemma for fundraisers.  
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Table 1. Summary 
Statistics 

Variable Description Mean Std. Dev. Min Max 
Success 1 if the project target is met, 0 otherwise 0.77 0.42 0 1 
Experience Number of previous projects by entrepreneur 0.41 1.64 0 20 
Goal Target funding amount for the project 122,984.30 197,889.90 1,000 1,000,000 
Duration Number of days of fund-raising period 35.89 11.38 7 60 
Level Number of backing options for this project 8.31 3.81 2 96 
Link Whether it provides links to other promotion 

channels 0.45 0.50 0 1 

Pictures Number of pictures for project introduction 10.83 8.96 0 72 
Category 1 if technology project, 0 otherwise .725 .446 0 1 
Discussions Number of discussions in fund raising period 109.89 452.28 0 16,785 
Backers Number of backers on first day of fund-raising 220.201 777.86 0 25,479 
Raised Amount raised on first day of fund-raising 55,430.86 210,676.60 0 5,047,543 
Prefund 1 if the project went through prefunding, 0 

otherwise 0.67 0.47 0 1 

PreUpdates Number of entrepreneur updates in prefunding 
period 0.1412 0.544 0 6 

PreDiscussions Number of discussions in prefunding period 9.68 34.36 0 1,068 
 

Table 2. Estimation Results: Funding Success 

 Model I   Model II  
 Success  Number of Backers Quality of 

Backers 
Success 

Prefunding .148*** 
(0.199) 

 1.069*** 
(0.061) 

0.093*** 
(0.077) 

-0.029 
(0.019) 

Number of Backers     0.097*** 
(0.008) 

Quality of Backers     0.077*** 
(0.006) 

Goal -0.024** 
(0.007) 

   -0.074*** 
(0.007) 

Duration -0.049 
(0.029) 

   -0.014 
(0.027) 

Levels 0.301*** 
(0.039) 

   0.153*** 
(0.036) 

Link 0.016 
(0.422) 

   -0.009 
(0.018) 

Note: * p<0.1; ** p<0.05; *** p<0.01  
Table 3. Estimation Results: Initial Momentum 

 Number of Backers Quality of Backers 
PreUpdates -0.037 

(0.067) 
0.415*** 
(0.102) 

PreDiscussions 0.341*** 
(0.023) 

0.124*** 
(0.037) 

Note: * p<0.1; ** p<0.05; *** p<0.01 
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